Current Trends in Artificial Intelligence Research, Future Prospects, and Opportunities

Dr. Marcel Wever
Munich Center for Machine Learning,
LMU Munich

What is the MCML

Joint research initiative of

Ludwig-Maximilians-Universität München and Technische Universität München

Part of German and Bavarian government's Al strategy
One of six national Al competence centers in Germany that is permanently funded since July 2022

Our mission

We unite leading researchers in Germany, to strengthen international, national and regional competence in the field of Machine Learning and Artificial Intelligence.

We make Machine Learning potential accessible to users from science, industry and society.

MCML is one of six Al competence centers in Germany

MCML in numbers

Three research areas

> Statistical Foundations and Explainability
> Mathematical Foundations
> Computational Models

Foundations of Machine Learning
> Computer Vision
> Natural Language Processing
> Multimodal
Perception
> Machine Learning in Biology,
Medicine, Physics and Geo Sciences

- Computational

Social Sciences

- Humane Artificial Intelligence

We transfer science in the field of Al into industry and society

Artificial intelligence and where to find It

- Profile picture for the workshop flyer
- Only low-quality picture from a website
- Insufficient quality for the flyer
- Use software tool based on Al to increase quality

- Face recognition
- Charging behavior
- Social media
- Spell checking
- Translation
- Web search
- Digital assistants

- Predictive maintenance
- Autonomous driving
- Fraud detection (banking)
- Online ads
- Recommendations

What are Al, machine learning, and deep learning?

- Artificial Intelligence:

Intelligent behavior (previously done by humans) is performed algorithmically
Artificial Intelligence

Machine Learning

Deep Learning

- Machine Learning:

A parameterized (mathematical) model
is "learned" from examples to map inputs to outputs

- Deep Learning:

An artificial neural network (ANN) is learned from examples

A brief overview of the history of Al

Machine Learning and Generative Models

- Classical machine learning maps inputs (e.g. picture) to outputs (e.g. label)

Machine Learning Model Cát

- Generative models invert the mapping
- Given a label, generate a picture

Stable Diffusion: Generative Models for images

- Text-to-image models generate images based on a prompt
- Basic idea behind diffusion models can be transferred to text generation, traffic simulation, game design, ...

"patent attorney justice
"attorney in front of Eiffel
"traffic simulation"

Stable Diffusion: Editing images

- (Image+Text)-to-Image: Edit images by masking and describing the changes

- Future: More advanced image and video editing tools

Best of Stable Diffusion

Generative Models for text data

- Given a text prompt: Generate a text as a response
- Translation of texts, e.g., to Japanese
- Can be used to generate standard documents: letters, CV's, summaries, explanations, statements, ...

Title: Current and Future Trends in Artificial Intelligence
Slide 1: Introduction
Welcome and introduction to the presentation Importance of Artificial Intelligence (AI) in today's world Overview of current and future trends
Slide 2: Current Trends in AI
Discuss the current state of Al technology
Highlight recent advancements and applications
Include examples such as natural language processing, computer vision, and recommendation systems
Slide 3: Machine Learning
Explain the role of machine learning in AI
Discuss supervised, unsupervised, and reinforcement learning Mention the importance of deep learning and neural networks Slide 4: Big Data and AI

Explore the relationship between big data and AI Discuss how AI is used to analyze large datasets Emphasize the impact on decision-making and insights Slide 5: Al in Healthcare

Present current applications of AI in healthcare Discuss diagnosis, treatment, and drug discovery Highlight the potential for personalized medicine Slide 6: Al in Autonomous Systems

Describe the role of AI in autonomous vehicles and drones Discuss safety and regulatory challenges
Explore future possibilities for autonomous AI systems

Building generative text models

- Generative models as ChatGPT are pre-trained on vast amount of data
- Varying levels of finetuning after pre-training

Step 0	Step 1 Foundation Model Example Responses	Step 2 Preferences	Step 3 Likes/Dislikes
Train on massive amount of text data	For given prompts, let humans give example answers	For a given prompt, let humans rank different responses	A user gives feedback in terms of like/dislike for generated text
Learn to predict a single masked word	Very costly, very informative	Less costly, moderate informativeness	Very cheap, weak signal

- With finetuning, domain-specific knowledge can be introduced

Handling of multi-modal data

- Al tools so far often restrict themselves to a single data format

- The world is multi-modal and so should be the data fed to Al systems
- More versatile Al systems that can handle different types of data

Generative Models for programming

- Generate program code, e.g., a program to compute the Fibonacci numbers in the programming language Python
- Prompt: „Give me a python program computing the Fibonacci numbers"

1. Iterative Approach (Recommended for large Fibonacci numbers):	1. Recursive Approach (Not recommended for large Fibonacci numbers due to exponential
python \quad Copy code	
	python \quad Copy code
def fibonacci_iterative(n : m	
$\text { if } n<=0 \text { : }$	def fibonacci_recursive(n):
elif $\mathrm{n}=1$:	return []
return [0]	elif $\mathrm{n}=$ = 1 :
elif $\mathrm{n}=2$:	return [0]
return [0,1]	elif $\mathrm{n}=$ = 2 :
else:	return [0,1]
fib_sequence $=[0,1]$	else:
for i in range($2, \mathrm{n}$):	fib_sequence $=$ fibonacci_recursive(n - 1)
next_fib = fib_sequence[i-1] + fib_sequence[i-2]	next_fib = fib_sequence[-1] + fib_sequence[-2]
fib_sequence.append(next_fib)	fib_sequence.append(next_fib)
return fib_sequence	return fib_sequence
\# Usage example:	\# Usage example:
$\mathrm{n}=10$ \# Change n to the desired Fibonacci sequence length	$\mathrm{n}=10$ \# Change n to the desired Fibonacci sequence length
fib_sequence $=$ fibonacci_iterative(n)	fib_sequence $=$ fibonacci_recursive(n)
print(f"Fibonacci sequence of length \{n\}: \{fib_sequence\}")	print(f"Fibonacci sequence of length \{n\}: \{fib_sequence\}")

Generative Models for assisting human experts

- Al-based assistants for human experts

"document scanning artificial intelligence"

Your Al pair programmer

Al-based pair programming

Al-assisted data science and machine learning

Automated Machine Learning (AutoML)

- High demand for machine learning applications
- Limited availability of experts to engineer those applications
- Solution: Automation [Achieves state-of-the-art performance
AutoML and NAS
Black-box optimization for
the choice of machine
learning algorithms /
artificial neural networks
Meta-Learning
Use machine learning to
predict for a dataset which
algorithms to use
Learn a generic predictor

AutoML Zero
Generate machine learning algorithms from scratch

Acceptance problems: Requiring tools to be more interactive and explainability

Explainable Artificial Intelligence

- Explain predicted outcomes Y to the user
- Influence of inputs X in terms of a force plot

- Highlighting the most influential parts of an image:

Only relatively simple explanations possible so far. In the future: Addressing other questions a user of AI might have.

Cooperative Al tools: Al interacting with humans

- Build Al tools that can interact with humans
- Cooperatively come up with solutions
- Generative Models for text as a basis

- Al mainly developed by mathematicians, computer scientists, computerlinguists
- Future: Al developed by domain experts incorporating domain-specific knowledge

Autonomous driving: Processing images

Object Recognition

- Detect objects
- Distinguish between moving and static objects
- Estimate the depth/ distance from monocular images

Realistic Simulation

"traffic simulation"

- Simulate realistic traffic situations
- Development environment for autonomous driving
- Test case selection (testing is expensive)

Scene Rendering

Input 2 D images

- Generate 3D models based on 2D images
- Situational awareness
- Predict information that is missing

Pitfalls: Misusage

- Responsible use of Al is crucial

Forbes

FORBES > BUSINESS
BREAKING

- Understanding the capabilities what Al can do and more importantly cannot do (yet)
- Blind usage is dangerous
- need proper education and explanations
(f) topline The lawyer for a man suing an airline in a routine personal injury suit used ChatGPT to prepare a filing, but the artificial intelligence

Pitfalls: Hallucinations of Generative Models

- Generative models for text may hallucinate instead of truthfully informing

The sole survivor of the Titanic disaster, often referred to as the "Unsinkable Molly Brown," was Margaret Brown. She was a passenger on the RMS Titanic when it struck an iceberg and sank in April 1912. Margaret Brown survived the sinking by boarding lifeboat number 6 and later played a prominent role in helping to organize and assist fellow survivors.

Margaret Brown's actions during and after the Titanic disaster earned her recognition and respect, and she became known as a heroine. She later became involved in social and philanthropic activities and continued to be an advocate for various causes. Margaret Brown's life story was adapted into the Broadway musical and film "The Unsinkable Molly Brown," with Debbie Reynolds portraying her in the 1964 film adaptation.

Trick question!
Actually there were 700 survivors

Avoiding hallucinations is a major challenge.
In the future: Link to knowledge bases maintaining facts.

Pitfalls: Biases

- Al learns from data created by humans
- Data can be biased: racism, gender-bias, ...
- Al may be used to influence people

```
Support 110 years of independent journalism.
Subscribe Sign In

ChatGPT proves that AI still has a racism problem
Even the most advanced artificial intelligence is hindered
by the inherently racist data it's trained on.

\section*{Pitfalls: Fake News}
- Generative Models can be used to make up fake pictures


Need for Al tools that can detect whether something is generated or real


\section*{Open (Legal) Issues}

\section*{EU AI Act}


\section*{Conclusion}

\section*{(Some) Future Prospects}
- Generative Models for
- Images
- Text
- (Partial) automation
- Business processes
- Data science
- Decision making
- Driving
- Supportive AI
- Sophisticated media creation
@wever_marcel
@MunichCenterML
- Generative Models handling
- Multi-modal data
- Specialized for various domains
- Connected to
- Explainability and interactiveness
- Explain inner workings
- Explain data
- Explain concepts
- Cooperative Al
- Addressing legal and ethical concerns
- Domain-specific Al
www.mcml.ai```

